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Comparing 10 Methods for Solution Verification, and
Linking to Model Validation
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Grid convergence is often assumed as a given during computational analyses involving
finite difference and finite element analyses. In practice, perfect grid convergence is rarely
achieved or assured, and this fact must be addressed to make statements about model verifi-
cation and validation (V&V) or the use of models in risk analysis. When modeling a problem
that is either discontinuous spatially (e.g. contact and impact) or discontinuous in physics
(e.g. shocks, melting, etc) we may observe non-smooth or non-monotonic behavior of the
output quantity as the grid is refined. This can lead to erroneous conclusions about the rate
of convergence, and a lack of means to estimate residual uncertainty in the output quan-
tity due to the use of non-converged grids. We compare ten techniques for grid convergence
assessment, each formulated to enable a quantification of uncertainty estimates due to the
use of non-converged grids, and rate of convergence for monotonic and non-monotonic grid
convergence studies. The more rigorous of these methods require a minimum of four grids in
a grid convergence study to quantify the grid convergence uncertainty. The methods supply
the quantitative terms for solution verification error and uncertainty estimates needed for
inclusion into subsequent model validation, confidence, and reliability analyses.

Nomenclature
AIAA American Institute of Aeronautics and Astronautics
ANSI American National Standards Institute
ASME American Society of Mechanical Engineers
�$B Benefit, usually in $$$
B Bias error estimate (ASME/ANSI treatment as an uncertainty)
BCR Benefit/Cost Ratio (�$B-�$C)/�$C
�$C Cost, usually in $$$
C Confidence, a numerical value
CFD Computational Fluid Dynamics
E Bias error as percent of fine grid solution Ffg

Ffg Quantity of Interest, discretized (computational) model solution, for finest grid
Fi Quantity of Interest, discretized (computational) model solution, for i th grid
F ∗

i Quantity of Interest, response surface estimate solution, for i th grid
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Fo Quantity of Interest, exact solution
F ∗

o Quantity of Interest, response surface estimate of exact solution
FEM Finite Element Method
FPI Fast Probability Integration
GCI Grid Convergence Index
hi Grid spacing for the ith grid
hm Grid spacing, mean of I = 1, Ng grids
ho Grid “spacing” at infinite refinement; ho = 0.
h1 Grid spacing for the finest grid
I Beam moment of inertia in the beam deflection examples
K Tuning Dials or “Knobs”; free parameters
L Beam length in the beam examples
LLNL Lawrence Livermore National Laboratory
LSQ Least SQuares method
M Margin, where Factor of Safety = M + 1
MV Mean Value
N Number of trials as in coin-flipping
Ng Number of grids in a grid convergence study
Ns Number of sets of grids
p Convergence Rate Exponent in REE Equation Fi = Fo + αh

p

i

p∗ Exponent in response surface approximation of REE Equation Fi∗ = Fo∗ + α∗hp∗
i

PDF Probability Distribution Function
r2 Pearson product moment correlation coefficient
rh Ratio of grid cell sizes along a given dimension
R Reliability
Rsm Reliability of a given Solution Verification Method
REE Richardson Extrapolation Estimation
RMS Root Mean Square
RSM Response Surface Model
s Sample standard deviation
S Random Uncertainty Estimate (ASME/ANSI treatment)
SQA Software Quality Assurance
U Uncertainty, General or “System” [always at a confidence C]
Us Solution Verification RSM uncertainty of fit as percent of Ffg

us Solution Verification RSM standard uncertainty of fit (at 1σ ) as percent of Ffg

Usver Solution Verification uncertainty (combination of E and Us), as percent of Ffg

Usver |C Solution Verification uncertainty assessed at confidence percent or level “C”
V&V Verification & Validation
w uniform distributed load on the beam in the beam examples
x Distance along the beam in the beam examples
y deflection axis (normal to x axis) in the beam examples
Z Standard Normal Distribution Variable for variable X, Z = (X − µ)/σ

α Constant in REE Equation Fi = Fo + αh
p

i

α∗ Constant in response surface approximation of REE Equation Fi∗ = Fo∗ + α∗hp∗
i

X2
v∗ Modified (biased) reduced Chi-Squared function

δRE Richardson Extrapolation Error
ε Richardson Extrapolation Error as a percent of Ffg

E Young’s Modulus in the beam examples
µ population mean (or estimate)
σ population standard deviation (or estimate)

355



LOGAN AND NITTA

I. Introduction

THE use of computational models is increasingly prevalent in product and process design, qualification, and
certification, because computing costs continue to go down while testing costs go up. With this increasing reliance

on computational models, a rigorous Verification and Validation (V&V) process is essential to assess and make clear
the accuracy and predictive capability of such models. Since complex models are often involve a discretization of the
fundamental equations of physics, the V&V process must include a means to assess errors and uncertainties due to
insufficiently fine discretization. One such implementation of Verification and Validation (V&V) of a computational
model of a physical system can be described simply as a 4-step “A-B-C-D’ process.1,2

The first step [A] is the planning and requirements phase. This includes description of the physical system (product)
and its requirements, and a plan accounting for available test data, what codes are available, and their status regarding
software quality assurance (SQA) and Code Verification. A simple interpretation of Code Verification is that “(code)
verification means solving the equations right”, i.e. if one intends to give an answer to the equation “2 + 2 =”, then
one must run the resulting code to assure that the answer “4” results. In other words, the features and physics of the
code that are relevant to the problem at hand should be tested and documented to assess the ability of the code to
provide mathematically correct answers. These tests should be as comprehensive as possible. Obviously this becomes
at least a quantitative value judgment, and often a qualitative value judgment, as to how much code verification and
SQA is actually cost effective. Step [A] is the time to address deficiencies if Code Verification or SQA are deemed
insufficient.

Second [B] is Solution Verification (the focus of this paper). Solution Verification is the process of assuring that
a computational model7 using discretization of a physical reality converges in each discretized spatial, temporal,
and iterative domain to a converged answer on the quantity of subsequent validation interest. Ideally, assurance of a
converged answer would also be assurance of a mathematically correct answer. We must assure ourselves that, with
fine enough discretization and tight enough tolerances, our code is capable of obtaining the correct (i.e. 2 + 2 = 4)
answer to problems that are similar to our real-world problem but are amenable to closed-form solution; this is the
realm of code verification. If we modeled with finer and finer meshes and converged to 2 + 2 = 5, with a rate of
convergence consistent with our numerical technique, we would recognize this as a code verification problem, not
necessarily a solution verification problem. So the process for solution verification would be to build a model, using
a discretization that would provide, in our best judgment, a high quality answer for the quantity of interest in the
regime of application of the model. The discretization should be made bearing in mind that we will want to refine or
coarsen the grid to assess grid convergence and quantify the estimates of solution bias error and uncertainty for any
chosen grid size. We can then run our discretized continuum model over a wide range of coarse grids to fine grids in
the asymptotic range,8 and observe both a converged solution and, ideally, a constant order or rate of convergence.

We are often modeling a reality of interest that is neither continuous spatially (e.g. contact and impact) nor
smooth in relevant physics (e.g. shocks, melting, etc). The typical result is a non-smooth or even non-monotonic
convergence plot, typically a plot of output quantity versus grid spacing (an example is shown in Fig. 1). Non-smooth
or non-monotonic convergence can lead to erroneous conclusions about the rate of convergence, and a lack of means
to estimate residual error or uncertainty. We offer one emerging technique that provides a quantification of solution
verification uncertainty at confidence (U |C, defined in Section II below) and rate of convergence for monotonic and
non-monotonic mesh convergence studies. The observed rate of convergence is useful in at least two ways. First, it
can sometimes be compared to the theoretical rate of convergence of the mathematical discretization and physics
description. Second, the observed rate of convergence can be used to extrapolate to the solution at zero grid size.
In the ideal solution verification case, monotonic behavior of the output quantity during refinement to an infinitely
fine grid leads only to an error estimate term; a bias error. This bias error may be compensated during the parameter
estimation process inherent to some V&V methods. However, even if the bias error is adjusted or fit to be zero using
a free model parameter somewhere along the line, the value of the original bias should still be carried through as an
additional15 uncertainty term in validation and reliability assessment, and this is the method we describe in Section
II below. Non-smooth or non-monotonic grid convergence adds an uncertainty of fit term (Us , described in Section II
below), in addition to our treatment of the bias error estimate as an uncertainty. We will assess the solution verification
uncertainty term, U = Usver , at a given level of statistical confidence, i.e. C = 68% or C = 95%, etc. as described
just below in this section. Unless otherwise stated, we will define U |C where C = 1-sigma or 68% confidence
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Fig. 1 Plots that begin a grid convergence study. Quantity of interest Fi vs. grid spacing, hi , on linear scale.
Exact second order “p = 2.00” convergence rate results with contrived perturbations to test assessment of solution
verification uncertainty.

(2-tailed) or 84% confidence (1-tailed) as assessed in this work with the assumption of a normal distribution. It is
also essential that the term Usver represent the uncertainty in the model output quantity of interest, rather than some
intermediate model output whose relation to the quantity of interest is not clear. This will enable the Usver term
of Step [B] of our “ABCD” V&V to be incorporated into the subsequent model validation, Step [C]. We refer to
Usver , the “solution verification uncertainty”, as one of the standard (or expanded) uncertainty15 terms to be added
in quadrature or otherwise and then used to generate confidence and prediction intervals20 on the simulation output
quantity of interest.

The third step [C] of ourV&V process is ModelValidation over the domain of the available validation data referent.
This requires the generation of both a mean and a confidence interval for model predictions, in light of comparison to
the available referent data, and with inclusion of other uncertainty terms not directly accounted for in model-vs.-data
comparisons. The error and uncertainty estimate from Solution Verification is one of these uncertainty terms; hence
it must be quantified in a manner consistent with the other terms in this third step; that is, a bias or systematic error
and an uncertainty at a specified confidence level.

The fourth step [D] of ourV&V process is the extrapolation of the third step outside the domain of model validation
into the domain of application; that is, the quantification of a predictive capability.3 The resulting uncertainty terms
at given confidence levels, from V&V, may be used in combination with reliability methods to establish risk-based
inputs into an adequacy or acceptance assessment.4 Even if the domain of application is “inside” the validation
space of the referent data of Step “C”, Step “D” must still justify the use of the physics, confidence intervals, and
uncertainties for interpolation within the space of referent data in the validation domain. Step “D” should provide the
quantitative information about the model and its predictive capability such that, given a requirement, an adequacy
assessment can be made to determine if more computing capacity, code development, validation analyses or referent
data are needed.

Oberkampf et al. state that V&V must address tradeoffs for a “balance of sufficiency and efficiency”,5 while Logan
and Nitta assert that V&V must acknowledge (and ideally, quantify) the point when “better has become the enemy
of good enough”.4 Such tradeoffs involve timing and funding for many issues including compute platforms, code
development, analyses, and certification issues and schedules. In this work, we note that Solution Verification forms
an important part of quantification of the tradeoff between speed of the computational analysis, and improvement
in confidence. The improvement in confidence obtained due to a smaller assessed Solution Verification error and
uncertainty estimate must be balanced against the cost of obtaining the additional compute capability to run the
computational model at finer meshing. We have discussed such benefit/cost ratio tradeoffs previously, in terms of the
benefit/cost of additional code development or obtaining more experimental data.6 In this paper, we will not extend
our analysis to the benefit/cost of purchasing a larger compute platform based on our quantification of Solution
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Verification; but we will demonstrate and compare procedures to develop the terms to do just that. Naturally, most
such methodologies are still evolving, and this work represents the views of the authors and not necessarily the views
of Lawrence Livermore National Laboratory. Regarding definitions of terms, we have tried to adhere as best we can
to the existing AIAA Guide for the Verification and Validation of Computational Fluid Dynamics Simulations.7

II. Grid Convergence in Solution Verification: Principles and Goals
Step “B” in the 4-step validation process is that of Solution Verification. Solution Verification is the process of

assuring that the output quantity of interest in a model approximating a physical reality with a discretized continuum
(e.g. finite element) code converges in each discretized domain (spatial, temporal, and iterative). This is accomplished
in the spatial domain by subdividing the elements or cells on the entire grid or portions of the grid. Grid convergence
is only part of what is necessary to fully address Solution Verification, but we will limit the scope of our discussion
to grid convergence to describe and demonstrate various methods.

It is important to emphasize that while solution verification is an assessment of the rate and proximity of our model
to a converged solution, we can only assess convergence to a correct solution in cases where a closed form solution
is available. Lacking a closed form solution, many authors use model validation to assess the ability of a model to
duplicate the quantity of interest compared to experiments approximating the real world application. In this all too
common case, we do not want the model validation process to be contaminated by the ambiguity of not knowing
whether our grid is converged or how much error and uncertainty might result from the grid we choose for our
model representation of experiment. It is the job of solution verification to provide and quantify this information via
quantitative grid convergence bias and uncertainty terms that can then work in conjunction with the model validation
process.

The first essential step in a grid convergence study is to plot the quantity of interest, Fi , vs. the mesh spacing
along a given direction, hi , for a series of i = 1, Ng grids. We will assume in this work that a best practice is to refine
the grid simultaneously in each direction, although selective directional refinement (i.e. refining the grid in only
one direction at a time) can be useful in some instances. To generate inputs to the subsequent validation, reliability,
and risk processes, we will need outputs from solution verification in the form of (error + uncertainty) at a given
confidence level. Our demand for a confidence level means that, since we will in general have Kg = 3 free parameters
in our grid convergence models as described below, we will find that in general, we need a minimum of Ng = 4 grids,
with Ng > 4 being highly desirable. Table 1 shows an example of a contrived grid convergence study, comparing
the grid convergence behavior of 6 different algorithms, all solving the same physical problem.

Each of the 6 algorithms is used with Ng = 7 grids (7 steps of grid refinement), to represent the results that might
be obtained from comparing 6 different codes or algorithms for solution. The exact solution is Fo = 600. Each of the
6 algorithms and each of their 7 grids provide a solution Fi , where Fi �= Fo due to discretization errors. The first of the
6 algorithms is contrived so that during the 7 grids used for refinement, the solution will converge at ho = 0 to exactly
Fo = 600, with a rate of convergence of p = 2.0 in Eqn. [1a]. The remaining 5 algorithms are perturbed slightly. In
this sense, the latter 5 algorithms will yield a non-constant value for the apparent grid convergence exponent p, since
the output quantity Fi is non-smooth. In the extreme, such as in the second algorithm, even the output quantity Fi

may be non-monotonic, and at this time some traditional grid convergence approaches will fail entirely. Typically
such results are plotted first on a linear scale as in Fig. 1, then on a log-log scale as log assessed error (Fi − Fo) vs.
log grid spacing.

Table 1 Data for “exact” grid convergence set: Fo = 600 with p = 2.0.

hi/h1 1. Exact to F = 600 2. Perturbed #1 3. Perturbed #2 4. Perturbed #3 5. Perturbed #4 6. All ±5

8.000 920.00 920.00 920.00 920.00 980.00 925.00
5.657 760.00 760.00 760.00 760.00 700.00 755.00
4.000 680.00 720.00 680.00 680.00 680.00 685.00
2.828 640.00 600.00 660.00 640.00 640.00 635.00
2.000 620.00 620.00 640.00 630.00 620.00 625.00
1.414 610.00 610.00 610.00 615.00 610.00 605.00
1.000 605.00 605.00 605.00 605.00 605.00 610.00

358



LOGAN AND NITTA

Figure 1 has features typical of a grid convergence study. It looks like our quantity of interest Fi converges to
Fo ∼ 600, but how can we be sure? What bias error and uncertainty can we assess given that we may only have
Ffg , our finest grid solution? We want to know how far we are from the exact solution Fo = 600, which is known
in this case but unknown in general. There are many assumptions made during grid convergence studies,8 leading to
the frequent use of the Richardson Extrapolation Estimation (REE) technique.9 The REE method assumes that the
grid convergence results are in the asymptotic convergence regime, neglects higher order terms in its approximation
assumptions, and assumes that the discretized model solutions Fi are of the form10 Fi = Fo + αh

p

i as given in
Eqn. [1a] just below. To accommodate non-smooth and even non-monotonic behavior of the quantity of interest
during grid convergence, we will build a Least-Squares (LSQ) or Response Surface Method (RSM11,12,13,14) model
to provide monotonic solutions approximating the discretized solutions. As is usually the case in the use of the RSM
technique, we are building a model of a model, so we must quantify the additional uncertainty term that results from
doing so.

We construct the RSM solutions F ∗
i of the same form for the assumed behavior, Eqn. [1a], and the RSM, Eqn. [1b]:

Fi = Fo + αh
p

i (1a)

F ∗
i = F ∗

o + α∗hp∗
i (1b)

In Eqn. [1b], F ∗
i = the solution from the i th grid (either the code result Fi , or a Least-Squares (LSQ) or Response

Surface Method (RSM) approximation F ∗
i ). If the grid convergence is perfectly monotonic with constant convergence

rate exponent ‘p = p∗’, we will have Fi = F ∗
i for all grids. We will see that in practice this is rarely the case except

in contrived examples. We will assess the uncertainty term resulting from our RSM approximation to the model’s
grid convergence results using the standard deviation of fit between Fi and F ∗

i In addition, we desire to obtain
Fo = (the exact known solution), or F ∗

o = (the estimate of the exact solution), where hi = the i th grid spacing,
p = the convergence rate (either theoretical or RSM fitted p∗), and α = a fitting constant (α∗ for the RSM fit).

Eqn. [2] and subsequent equations below follow from Eqn. [1a] and [1b] and hence carry the same caveats and
assumptions such as a constant grid refinement ratio “rh”. This restriction could be lifted, as there are more general
methods as discussed by Roache8 that do not require a constant rh. If the model results are consistent with a constant
observed convergence rate exponent, we can use any combination of grid results for the quantity of interest Fi in
Eqn. [2] and obtain the same exponent p.

We first obtain an estimate of the exponent p of convergence rate to the fully converged solution Fo. For any grid
triplet or series of three grids, with a constant p and grid refinement ratio “rh”, we can calculate the convergence rate
(exponent p), as in Roache,8 as:

p = log[(F1 − F3)/(F1 − F2)]/ log[rh] (2)

If we fit the grid convergence output quantity results to an RSM with an assumed constant exponent p, we can
then calculate an estimate of the exact solution at zero grid size as in Roache8 as:

F ∗
o = Fo = F1 + (F1 − F2)/(r

p

h − 1) (3)

If this is true, we will obtain a correlation coefficient r2 = 1 to the regression of the line fitting log(F ∗
i − F ∗

o )

versus log(hi). We will also obtain a sample standard deviation s = 0 (and bias B = 0) when comparing the set
of computational model results and regression fit results. In practice however, even with smooth mesh convergence
results, it seldom happens that all the Fi will yield the exact same exponent p. For example, to obtain exactly p = 2 at
all points in a grid convergence study, we would need to be modeling a problem whose exact solution was a quadratic,
with a numerical formulation that is second order convergent. Therefore to obtain an estimate of p over the entire
domain of grid sizes, we suggest a regression fit “response surface model” (RSM) to the linearization of (Eqn. [1b])
to obtain a constant regression slope p∗.

We can obtain a regression value of p∗, with a correlation coefficient (hopefully r2 ∼ 1), and standard deviation
comparing the regression fit to the computational model grid refinement ratios. We can estimate the error E1 in our
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finest grid solution (F1) using Eqn. [4a] if p = constant, or Eqn. [4b] for the RSM where we define p∗ = constant:

E1[fine grid] = (F2 − F1)/(r
p

h − 1) (4a)

E∗
1 [fine grid] = (F ∗

2 − F ∗
1 )/(r

p∗
h − 1) (4b)

This value may also be taken as an uncertainty, in addition to a systematic error or bias estimate. The proper choice
here is not universally established in the community, since in application of the model, we cannot always assure
ourselves of the direction of the bias error; only that we have a finite bias error at any grid that does not produce the
exact, but often unknown, Fo. Therefore we might take the bias error and also sum in quadrature15 (i.e. root mean
squared (RMS) as in Eqn. [5a]) the uncertainty taken from the Richardson Extrapolation Estimation (REE), with the
uncertainty taken from the (small sample corrected) standard deviation of the computational model result minus the
regression fit (response surface model) at constant p∗. Or, we might simply take a linear sum of the REE estimate,
(E) and the response surface model (RSM) random uncertainty estimate, (Us). When the bias error term B, or E as
we denote it for the Richardson Extrapolation term, is taken as an additional uncertainty, we choose in this work
to scale E to EC , scaled from E by the statistically assessed percent confidence used for the rest of the analysis.
We now briefly contrast our treatment of the systematic uncertainty or observed bias B with the ASME suggested
treatment regarding test uncertainty.15 For this discussion we will neglect small sample corrections and so assume
that sample standard deviation equals population standard deviation, or s = σ . The standard quadrature process we
adopt15 essentially defines use of the bias as a systematic uncertainty term (B), in quadrature with a normal 2-sigma
or 95% confidence random uncertainty 2S, or 2us in our notation. Our procedure uses a normal 1-tail 2-sigma fraction
97.7% of the bias error B (or EC = 0.977E here) in quadrature with Us = 2us (at 2-sigma). For a 1-sigma analysis,
we combine the 1-tailed 84% (Ec = 0.841E) with Us = 1us at 1-sigma. The general expression for combining the
systematic component and random (uncertainty of fit) component is given in our notation as:

U |C = U = (E2
c + U 2

s )(1/2) (5a)

In Eqn. [5a], both the bias term Ec and the random term Us are given at a specified confidence level. Specific treatment
using the ASME procedure15 would give a combined uncertainty at 95% assessed confidence (U95) or 68% assessed
confidence (U68), with Ec = 1.000E or Ec = 0.500E, respectively, of:

U |C = U95 = ((1.000E)2 + (2us)
2)(1/2) (5b)

U |C = U68 = ((0.500E)2 + (1us)
2)(1/2) (5c)

In contrast, the treatment of systematic uncertainty combined with random uncertainty used in the current work
would provide, with Ec = 0.977E or Ec = 0.841E, respectively:

U |C = U95 = ((0.977E)2 + (2us)
2)(1/2) (5d)

U |C = U68 = ((0.841E)2 + (1us)
2)(1/2) (5e)

We are not aware of a well accepted standard for combining model assessed bias (B or E) with model fit uncertainty
(us here) and would welcome such a standard. Meanwhile, we are exploring more rigorous treatments of the bias
terms when treated as added uncertainties. The procedure we suggest and use here does not greatly influence our
results or conclusions, but this may not always be the case. We will use the linear combination (Ec + Us) in part
of this work as noted, but unless otherwise stated, this work will use the root-mean-squares (RMS) combination to
obtain an estimate of the total Uncertainty (U) from our grid convergence study:

U |C = U = (E2
c + U 2

s )(1/2) (5a)

This quantity (U) is hereafter expressed as a percent of the estimated exact solution Fo, so that:

U = (100%) × U/F ∗
fg (6)

For a smooth, monotonic example, Us ∼ 0 since the regression fit response surface is essentially an exact
duplicate (r2 = 1) of the computational model, so the entire error “Ec + Us” is just “Ec”, the REE estimate taken
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as a confidence scaled bias uncertainty for the fine grid, after Roache:8

E1[fine grid] = (F2 − F1)/(r
p

h − 1) (4a)

Eça and Hoekstra10 define the REE as

δRE = E1 = F ∗
i − F ∗

o = α∗hp∗
i (7a)

For the finest of the i = 1, Ng grids (i = fg) we have:

δRE = E1 = F ∗
fg − F ∗

o = α∗hp∗
fg (7b)

We report percent error estimate δRE or E as a percent of the finest grid solution or its RSM estimate F ∗
fg:

E = (100%) × E1/F
∗
fg (8a)

|ε| = E = %δRE = (100%) × |(Ffg − F(fg+1))/Ffg| (8b)

If we neglect the uncertainty of fit component Us in Eqn. [5], our process is complete since now Usver = U |C = Ec

in Eqn. [5]. However, as noted above, it is rare that a grid convergence study of i = 1, Ng grids will exhibit an exact
fit to Eqn. [1a], with p = constant, α = constant, and no oscillations. To address the reality of non-smooth grid
convergence observations, two basic methods have been used. One approach sets uncertainty of fit Us = 0, and
depends on a Factor-of Safety Fs approach (see Method #1 and Method #2 below) to modify the value of δRE or E
as follows:

Usver = %GCI (fine grid) = Fs |ε|/(rp − 1) (9)

The other approach (see Method #6 to Method #10 below) uses a least-squares or response surface method to account
for non smooth or non monotonic grid convergence, and uses an explicit uncertainty of fit term Us instead of a factor
of safety Fs . In this approach, the three free parameters Kg = 3, (F ∗

o , α∗, and p∗) are best-fit to the grid convergence
study of I = 1, Ng grids. To account for the fitting process, Eça and Hoekstra10 also include a Least–Squares (LSQ)
uncertainty of fit term, which can also be called, as we shall do here, the Response Surface Method (RSM) uncertainty
term:11–14

Us =
√√√√ Ng∑

i=1

(Fi − (F ∗
o + α∗hp∗

i ))2/(Ng − Kg) (10)

Our estimate of solution verification (SVER) grid convergence uncertainty U = Usver (at a given confidence
level) given by Eqn. [5] is the term that we can use as a Mean Value (MV) or other Fast Probability Integration (FPI)
method16 term in subsequent model validation, reliability, risk, and benefit/cost quantification. Therefore, the body
of this work will describe various ways, from simple to elaborate, to obtain Usver estimates, and how these methods
behave on several challenging (oscillatory or non-monotonic) grid convergence examples.

III. Grid Convergence in Solution Verification: Methods
Using the notation above, we present a range of methods from simple to elaborate, to obtain a quantified estimate

of U = Usver , the solution verification grid convergence uncertainty estimate of Eqn. [5a]. There are 10 such methods,
each building on the others, which we now describe.

A. Method #1–#5: Grid Convergence Index and Richardson Extrapolation
The first 5 methods are based on Grid Convergence Index (GCI) and Richardson Extrapolation Estimates (REE)

with some fairly simple, empirical suggestions. These methods are very simple and easy to key into a spreadsheet
program and we would encourage the reader to try them, both as an introduction to GCI and REE, and as a starting
point to the more advanced methods.
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1. Method #1: Grid Convergence Index as 2σ (GCI, 2σ )
For a series of grids i = 1, Ng that shows monotonic convergence, use the Grid Convergence Index (GCI) method

as described by Roache8 and others17 as a first estimate. For Computational Fluid Dynamics (CFD) problems, there
are good and suggested correlations whereby the basic REE estimate is multiplied by a GCI factor of safety, Fs = 1.25
for Ng = 3 or more, and Fs = 3.00 for Ng = 2. With these Fs in the GCI, one can obtain an estimate of U = Usver

at what is contended to be an expanded uncertainty at 2-sigma or 95% confidence8 as given in Eqn. [9].
The use of these Fs with the contention of 95% confidence is completely empirical, but is based on correlation

with an extensive database of agreement for CFD.8 It is not clear that the same 95% confidence level correlates with
the use of these same Fs for computational mechanics or other finite element, finite difference, or finite volume grid
studies.

2. Method #2: Grid Convergence Index as 1σ (GCI, 1σ )
Use the GCI process described as Method #1, with Fs = 1.25 and Ng = 4 or more. Take the resulting Usver = U

as a 68% confidence estimate. We suggest this procedure because, based on our small but growing database of
non-smooth grid convergence studies with known analytical solutions as discussed below, a claim of 68% confidence
fits much better than a claim of 95% confidence. The section below on Results and Reliability will help support this
suggestion. However, like the original values of Fs = 1.25 or Fs = 3.00 for the GCI, our suggestion for taking the
Usver from Method #2 as a 68% confidence (1-sigma standard uncertainty) estimate is purely empirical. Nevertheless,
since Method #1 and Method #2 can be used together with no extra work, and since they are a good motivation to
pursue more complex methods, we suggest that they be used as first steps in a solution verification assessment. We
will show examples of this below.

Method #1 and #2 will give generally conservative estimates of Usver for smooth, monotonic grid convergence
results, where the physics and mathematics of the problem actually yield a constant, or even approximately constant,18

rate of convergence p for the problem at hand. However, Method #1 and #2 will fail for non-monotonic grid conver-
gence results. This is because these methods require terms of Log(error), such as Log(Fi − Fi−1) or Log(Fi − F ∗

o )

to obtain estimates of the slope p in Eqn. [1a]. For non-monotonic grid convergence, the sign of (Fi − Fi−1) changes
sign as “i” is incremented to compare the next two grid results, so Log(Fi − Fi−1) becomes undefined during the
assessment. Because of this, we suggest the next three methods. For each of these Methods, #3, #4, and #5, the first
step is to guess a value for p in Eqn. [1a] and then plot, on a linear scale, the observed grid solutions Fi vs. h

p

i . The
intercept is then F ∗

o , and the slope is α in Eqn. [1a].

3. Method #3: Fit Output F vs. Grid Spacing, with Factor of Safety = 3 (Fit, Fs = 3)
For this method, we suggest iterating to find p that maximizes the correlation coefficient r2 of the linear fit of Fi

versus h
p

i . In other words, since we have assumed that Eqn. [1a] (Fi = Fo + αh
p

i ) describes our grid convergence
behavior, so that h

p

i should explain all the variation in Fi , ideally we would obtain r2 = 1.000 if we select the
right p. In reality this will not be generally true, partly because Eqn. [1a] may not hold, and partly because our
grid convergence results are not smooth. However, since we have assumed that Eqn. [1a] does describe our grid
convergence behavior, maximizing r2 is a way to attempt to enforce our assumption that h

p

i should explain all the
variation in Fi . Then, after obtaining α and p to maximize r2, use a safety factor Fs = 3 and take the resulting GCI
(Eqn. [9]) as the 1-sigma estimate of Usver = U . Choosing a value of Fs = 3 or any other value is just as empirical
a process as choosing Fs for the GCI procedure, and so far, our suggestion of Fs = 3 is based on an even smaller
database than the suggested values for the Fs in GCI. The value of Fs = 3 with 1-sigma may seem extreme, but with
our limited data base of non-smooth grid studies with exact solutions, it is the best suggestion we have so far.

4. Method #4: Richardson Extrapolation, Maximum Error (δRE, MAX)
Method #4 is one step simpler than Method #3, which is because Method #3 is just a simplified Richardson

Extrapolation without extension to GCI or any further modifications. For Method #4, the steps are simply to plot Fi

versus h
p

i , choosing first p = 1 and then p = 2. Take the maximum of the two uncorrected δRE = E1 (E as a percent)
as the 1-sigma estimate of Usver = U .
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5. Method #5: Richardson Extrapolation, Average Error (δRE, AVG)
This method is a variant on Method #4. Obtain δRE = E1 as in Method #4 for both p = 1 and p = 2, and take the

average of these same two uncorrected δRE = E1 as the 1-sigma estimate of Usver = U .

B. Method #6–#10: Use of Response Surface Methods (RSM)
Methods #1–#5 are either well described in the literature (Method #1 and #2) or they are robust and simple to

implement (#3, #4, and #5). They have the advantage that Method #1 and #2 are obtained together with no additional
work, and have been used with as few as Ng = 2 grids, although we know of no one in the community advocating
Ng = 2. In defense of Ng = 2 or even Ng = 3 for simulations of low risk scenarios,19 we recognize that generating
the meshes and grids appropriate for solution verification is one of the most challenging and labor-intensive tasks
in the finite element community today. (We also recognize that all too often, we see the use of Ng = 2 or Ng = 3,
or even Ng = 1 for simulations that could hardly be regarded as applied to “low risk” scenarios, e.g. where the
consequences involve minimal dollar amounts and negligible health or safety considerations.) Method #3, #4 and #5
can be done very efficiently at the same time simply by selecting p = 1, then p = 2, and then iterating the value of p
to complete Method #3. These first 5 methods are so simple that we suggest looking at them as a first simple check
on the number being used for Usver = U .

Method #6 through Method #10 all involve generation of an uncertainty term Us explicitly. To do this, there is
a minimum requirement that Ng > 3, since we have K = 3 free parameters (F ∗

o , α, p) to fit. Four grids Ng = 4
is a minimum needed, and even Ng = 4 will lead to use of fairly large small sample corrections with the many
assumptions inherent to small sample statistics. Our examples contain studies with Ng = 6 and Ng = 7. However,
application specific grid convergence studies with Ng = 6 or more are rare, especially for complex problems with
complex geometry.

6. Method #6: Eça and Hoekstra 2004, Minimize U (EH04u)
Method #6 is the method exactly as described in Eça and Hoekstra10 and hence denoted the EH04u method

here. Of note, the estimate of E is obtained by multiplying δRE by a GCI Fs = 1.25, which is often taken as 95%
confidence, based on previous work and empirical correlations regarding the GCI.8 This estimate of systematic error
E is added to Us at 1-sigma to obtain Usver = U . We will call this a 1-sigma estimate of Usver = U in the examples
below. However, as discussed above, there is no standard or consensus on combining bias error style uncertainty
terms (δRE or E or B in general) with model fit uncertainty or variability terms (Us in this case). Of note is in the
Eça and Hoekstra (EH04u) method, the fit is obtained by choosing the K = 3 free parameters to minimize the Us of
Eqn. [10].

7. Method #7: Nitta and Logan 2004, Minimize U (NL04u)
Method #7 was developed and implemented independently by Nitta and Logan11 (denoted NL04u) and in about

the same time frame as the EH04u method. Both methods are processes built with logical elements and they differ
only in the details. In Method #7 (NL04u), we do not currently use the GCI style Fs = 1.25 but rather Fs = 1.00; in
other words, we use Usver to construct confidence intervals and prediction intervals20 as given by Eqn. [11] below,
rather than applying any safety factor such as Fs . However, we do use a small sample correction (Student’s t or
other depending on conservatism) based on the number of grids = Ng , the number of free parameters K = 3, and
the assumption of a normally distributed LSQ uncertainty of fit Us . As in Method #6 (EH04u), we perform a least
squares fit to minimize the term Us in Eqn. [10].

8. Method #8: Nitta and Logan 2004, Minimize E + U (NL04eu)
Method #8 is an extension of Method #7, also from Nitta and Logan,11 and is denoted NL04eu. The procedure is

the same as Method #7 (NL04u), except that we use a least squares procedure to generate a response surface model
of the code results on the i = 1, Ng grids, this time to minimize the total term Usver = U in Eqn. [5]. That is, instead
of minimizing Us of Eqn. [10], we minimize Eqn. [5a], the combination of E with Us . This does not seem as faithful
to the principles of Richardson Extrapolation or even Least Squares Richardson Extrapolation with RSM as does
Method #7 (NL04u) or Method #6 (EH04u).

However, as we noted on some non-monotonic examples, minimizing Us in Eqn. [10] can give spurious results
for the free parameters K = (F ∗

o , α∗, p∗). Method #8 (NL04eu) is far more stable in these situations. The (NL04eu)
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procedure will give slight errors in the case of an exactly correct grid convergence study, compared to Method #7
(NL04u) or Method #6 (EH04u) which will, if the uncertainty of RSM fit Us = 0, converge to the exact analytical
solution F ∗

o = Fo. For example, consider the grid convergence in the left column of Table 1. This contrived set of
solutions gives an exact convergence rate (p = 2.000) as the grid is refined, with perfect convergence predicted to
the exact solution of F ∗

o = Fo = 600. Both Method #7 (NL04u) and Method #6 (EH04u) will converge to F ∗
o =

Fo = 600, and provide correct estimates of discretization error E for the finest grid used (bottom row of Table 1,
e.g. Ffg = 605 vs. F ∗

o = Fo = 600). To show that even in this situation of perfect grid results for perfect p = 2.000
convergence rate, the approximation of Method #8 (NL04eu) is a good one, we used both Method #7 (NL04u) and
Method #8 (NL04eu) on this exact grid study. We used progressively coarser values for hi at i = Ng , the finest grid,
and compared the error in the estimate of Fo = 600 or Fo = 100% (known exactly), in light of the known ratio of the
fine grid solution Ffg/Fo. We also compared the overall Usver = U , which is the quadrature combination of E and Us

(Eqn. [5a]). Figure 2 shows that at fine grids, Method #7 (NL04u) and Method #8 (NL04eu) are indistinguishable. At
coarser values of hi , i = Ng , we see that Method #7 (NL04u) continues to converge to the exact F ∗

o /Fo = 100%, while
Method #8 (NL04eu) drifts away from the exact solution, giving F ∗

o /Fo = 104% for very coarse grids. However, at
this same grid, we have Ffg/Fo = 153%. In other words, by the time the difference in F ∗

o estimate between Method
#7 (NL04u) and Method #8 (NL04eu) is 4% different, the grid is so coarse that we are far from the true solution
anyway (53% too high) so the difference between Method #7 and #8 would be the least of our concerns. We feel
that given the robustness of Method #8 (NL04eu), it is worth tolerating this small difference. Similarly, Fig. 3 shows
a comparison of Usver = U , the quadrature of E and Us , for both Method #7 (NL04u) and Method #8 (NL04eu)
methods. On the coarse grid, the Usver estimate is U = 109% for Method #7 (NL04u), and only U = 105% for
Method #8 (NL04eu). Both estimates of U (at 1-sigma confidence) are so large as to make this grid choice practically
useless. And still, Method #7 (NL04u) and Method #8 (NL04eu) are very close in their estimate of F ∗

o ∼ 600 and
the assessed Usver .

Therefore, given the small discrepancy resulting from the use of Method #8 (NL04eu), we strongly recommend
using jointly Method #7 and #8. While Method #7 (NL04u) has sounder foundations in the limit of vanishing mesh
size “h”, Method #8 (NL04eu) is an essential partner because it is more robust, and it will alert us to spurious results
that may result from Method #7 (NL04u) in non-smooth grid convergence studies. As shown in Fig. 2 and Fig. 3,
there should not be much difference between the Usver obtained from Method #7 (NL04u) and Method #8 (NL04eu).
If there is, we suggest using the larger of the two Usver so obtained while the reason for the large discrepancy is
investigated.
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o /Fo for Method #7 (NL04u) and Method #8 (NL04eu, more robust but

approximate). Both estimates are excellent compared to the error in Ffg vs Fo for the very “coarse” choices of finest
grid spacing hfg .
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Fig. 3 Comparison of the estimate of Usver = U for Method #7 (NL04u) and Method #8 (NL04eu, more robust
but approximate). Both estimates are very close even at high values of Usver for the “coarse” choices of finest grid
spacing hfg .

9. Method #9: Logan and Nitta 2005, Minimize U (LN05u)
Method #9 is the same as Method #7 (NL04u) but with one important addition. In Method #9 (denoted LN05u),

we note that, consistent with the original intent of the GCI, we are extrapolating our grid convergence study, with
h(i = Ng) the coarsest grid, and h(i = 1) the finest grid, to ho = 0, the estimate F ∗

o of the fully converged solution
Fo. Beginning with Method #6 (EH04u) and Method #7 (NL04), we are now mixing in the statistics of a least squares
uncertainty term Us . In Method #9 (NL05u), we note this, and as part of our extrapolation to ho = 0, we correct with
a statistical multiplier for the prediction interval extrapolated to ho = 0 as in Eqn. [12] below. This is the simplest of
standard parabolic corrections20 that is a function of the interval from hfg(i = 1) to hcg(i = Ng), with mean hm. The
prediction interval correction is a function of distance from ho = 0 to the mean of the grids used, hi = hm, compared
to the span of the coarsest hi = hcg and finest hi = hfg grids used. This extrapolation prediction interval estimate
will be small if hi = hfg is close to ho = 0 already, and large if hi = hfg is far from ho = 0.

10. Method #10: Logan and Nitta 2005, Minimize E + U (LN05eu)
Method #10 (LN05eu) is the same as Method #9 (LN05u), except that we minimize Eqn. [5a], the combination

of E + Us , so we denote this as Method #10 (LN05eu). Method #9 and #10 (LN05u and LN05eu) form a pair in that
both use the prediction interval correction extrapolation to ho = 0 in Eqn. [12]. This is analogous to Method #7 and
#8 (NL04u and NL04eu) which form a similar pair to Method #9 and #10 (LN05u and LN05eu), except that Method
#7 and #8 (NL04u and NL04eu) do not use the prediction interval correction extrapolation, and so Method #7 and
#8 obtain a prediction interval (P.I.) equation as:

P.I. = Us

√
1 + 1

Ng

(11)

Method #9 and #10 obtain a prediction interval (P.I.) that contains an explicit term for extrapolation to ho = 0 by
multiplying the term Us by:

P.I. = Us

√
1 + 1

Ng

+ (0 − hm)2

�i(hi − hm)2
(12)

IV. Grid Convergence in Solution Verification: Results and Reliability
We will now demonstrate one quantitative example to evaluate the usefulness of each of our 10 methods for

estimating Usver = U , our solution verification contribution to uncertainty at (1-sigma in this case) confidence. We
compared each of the 10 methods on grid convergence studies that had known solutions. The first of these was the
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set of grid convergence results given in Table 1. This study has Ns = 6 sets of results for comparison, and each set
of results has Ng = 7 grids with successive refinement as shown in Table 1 to study grid convergence.

The second series was taken from the 2nd Verification Suite, a comparison by Harrison and Conway21 at LLNL.
This annual Verification Suite was begun as part of the first edition of our V&V Methodology22 several years ago,
with results first reported in the 1st Verification Suite by Sam et al.23 This second series contains a grid convergence
study with Ng = 7 grids, for a beam bending problem. We compare to the exact solutions for bending stress and
end deflection for a beam represented by shell elements loaded on the shell surface. The bending behavior through
the shell thickness should approximate that of a beam element. The beam bending model is a discretized model of a
beam assumed to follow the governing equation:

EI (d2y/dx2) = −(w/2)(xL − x2) (13)

In this case, a uniform distributed load w is applied along the whole length of the upper surface of a beam (x = 0
to x = L). The beam has elastic modulus E and moment of inertia I. Deflection is measured in the direction y at
the free end of the beam, x = L. We use a series of three different finite element codes, for a total of Ns = 6 sets
of results. The results of each of the Ns = 6 finite element code grid refinement sets (stress for each of 3 codes and
deflection for each of 3 codes) are given in Table 2, for the 7 grid refinement steps hi/h1. The exact solution is given
in the bottom row for comparison to the direct finite element outputs shown.

The third series is also taken from the 2nd Verification Suite, and is a comparison on Ng = 4 grids (the minimum
number of grids for Methods #6 to #10). Again the problem is that of beam bending, with a known exact solution.
This time the same three finite element codes are compared, on stress and deflection (giving an additional Ns = 6
sets of grids), but with a brick element mesh. The results of each of the Ns = 6 finite element code grid refinement
sets (stress from each of 3 codes and deflection from each of 3 codes) are given in Table 3, for the 4 grid refinement
steps hi/h1.

Altogether, we have Ns = 18 sets of grid convergence studies, with Ng = 7 or Ng = 4 grids for each. For each
of our Ns = 18 sets of grid convergence studies, we will, in the end, generate an estimate (Eqn. [5a]) of Usver = U ;
our estimate of the uncertainty at 1-sigma of our fine-grid solution F ∗

fg , compared to our estimate F ∗
o of the exact

solution. Since all of the Ns = 18 sets have known analytical solutions, we can compare this Usver to the actual
difference Eactual between the code-produced fine grid solution Ffg and the known solution Fo. If we claim 1-sigma
confidence assuming normal distributions of Usver , and we are neither too conservative nor too optimistic, we should
find that about 68% of the time (12/18) the Usver estimate should enclose Eactual . In about 6 of 18 cases, we should
find that Usver does not enclose Eactual . Similarly, if we use the 2-sigma estimate of Usver |2σ , we should find that
in 95% of cases (about 17/18) Usver should enclose Eactual . In about 1 of 18 cases, Eactual should be larger than

Table 2 Finite element code results and exact solution data for 2nd series on grid
convergence: 7 grids for refinement.

Relative grid size Beam bending stress (MPa) Beam end deflectgion (mm)

hi/h1 Code 1 Code X Code W Code 1 Code X Code W

Coarse
16 98.4 98.4 98.2 1.2718 1.2718 1.2718
12 100.7 100.9 100.4 1.2717 1.2717 1.2720
8 102.1 102.1 101.7 1.2718 1.2714 1.2720
6 102.5 102.6 102.2 1.2716 1.2714 1.2719
4 102.8 102.9 102.4 1.2716 1.2713 1.2719
2 103.1 103.1 102.8 1.2713 1.2713 1.2719

Fine
1 103.2 103.2 102.9 1.2713 1.2713 1.2719

Exact solution: 103.4 103.4 103.4 1.2700 1.2700 1.2700
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Table 3 Finite element code results and exact solution data for 3rd series on grid
convergence: 4 grids for refinement.

Relative grid size Beam bending stress (MPa) Beam end deflection (mm)

hi/h1 Code 1 Code X Code W Code 1 Code X Code W

Coarse
8 38.7 38.7 29.7 1.7060 1.5621 1.2488
4 46.5 46.5 43.9 1.3674 1.3674 1.2700
2 51.8 51.8 51.2 1.2996 1.3039 1.2742

Fine
1 54.7 54.7 54.7 1.2869 1.2827 1.2827

Exact solution: 58.2 58.2 58.2 1.2700 1.2700 1.2700

Usver |2σ . We define our Solution Verification Method Reliability Rsm as

Rsm = 1 − |Fraction inside, Method Estimate − Fraction inside, expected| (14)

That is, at 1-sigma for Ns = 18, we expect 12 of the series to have Usver > Eactual , or Fraction Inside, Expected =
12/18 = 0.667. If a given Method #X (where #X is #1 thru #10 in turn) assesses all 18 Usver > Eactual , then [Fraction
Inside, Method #X] = 1.000 and Rsm = 1 − |1.000 − 0.667| = 67%. If a given Method assesses 12 Usver > Eactual ,
then Rsm = 1 − |0.667 − 0.667| = 100%.

If a given Method assesses only 9 Usver > Eactual , then Rsm = 1 − |0.500 − 0.667| = 83.3%. For a method that
is neither too optimistic (risk induced due to non-conservatism) nor too pessimistic (too risk-averse) we want Rsm

to be as close as possible to 100%. As just stated, we would expect at 2σ (95% confidence) that about 5% of the
time, or in about 1/18 cases, Eactual would be larger than Usver |2σ . It is worth noting that our definition of Method
Reliability means that even if we find, at 2σ , that Eactual is larger than Usver |2σ zero out of eighteen (0/18) or two out
of eighteen (2/18) times instead of our expected one out of eighteen (1/18) times, the Method Reliability will only be
lowered by 6% (one in 18). Naturally, a sample size of Ns � 18 would be better, but our sample size of Ns = 18 will
make our points without excessive truncation artifacts due to small integer sample size. This definition of “Method
Reliability” is similar, though not identical, to the development and usage given by Urbina, Paez, et al.24 Figure 4
shows the results on our Ns = 18 grid sets, for the 10 methods. All 10 of the Methods show fairly high Method
Reliability Rsm, except for the use of Method #1 (GCI, 2σ ), with GCI = 1.25 as a “95% confidence” estimate. We
realize that there is a large database of CFD solutions (perhaps mostly smooth and monotonic) that supports8 the
use of Method #1 (GCI, 2σ ). However, for our contrived and mechanics example Ns = 18 sets (most of which were
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Fig. 4 Solution verification method reliability Rsm, for the 10 Methods #1 to #10 on the 18 grid set series discussed.

367



LOGAN AND NITTA

non-smooth), the use of GCI = 1.25 is much closer to a 68% confidence estimate than 95%. A larger sample set (so
that the number of grid convergence sets Ns � 100) is needed to draw any general conclusions in this regard, but
we suspect that this observation is due perhaps to the characteristics of solid mechanics applications, but most likely
to our intentional selection of non-smooth grid convergence results.

It is important to note that we did not allow values of exponent p > 2 in our fitting procedures, since none of our
examples had numerical formulations that would enable convergence of order or rate p > 2. We note that methods
in solution verification can give spurious values11 of p � 2, or p larger than the theoretical value of the formulation,
in the presence of non-smooth grid convergence results. We attempted to avoid this situation by not allowing any
fits with p > 2. It has been suggested to us that in the GCI procedures, it is best to use the lesser of the observed p
and the theoretical p of the numerical algorithm being used in assessments of Usver . We agree and would extend the
suggestion to the entirety of Method #1–#10.

While encouraging, the “Method Reliability” shown in Fig. 4, cannot be used to identify any one of Method
#1–#10 as superior to all the others. Perhaps an extension of our data set beyond Ns = 18 will reveal more about the
method reliabilities.

A measure of robustness of each of the Methods #1 to #10 is given by evaluating a variant of the reduced Chi-Square
(X2

v) statistic25 as:

X2
v∗ =

Ns=18∑
I=1

[Usver/(Ffg − Fo)]2/(Ns = 18) (15)

We stress that our X2
v∗ is a modified form of X2

v , in that we are not attempting to use model free parameters to remove
bias as is commonly done which normally leads to terms such as (N-1) in the denominator of standard deviation.
A high value for this X2

v∗ indicates a solution verification method that is too conservative; Usver is in general much
larger than Eactual . We computed this value of X2

v∗ for each method, but also added the standard deviation of the X2
v∗

ratio for each of the Ns = 18 sets. Ideally, if Usver = Eactual in each of the Ns = 18 series, we would have X2
v∗ = 1.00

and the standard deviation s(X2
v∗) = 0.00 so X2

v∗ + s(X2
v∗) = 1.0 + 0.0 = 1.0. The actual values are shown in Fig. 5

for each of Solution Verification Methods #1–#10. This figure measures the combination of over-conservatism (bias)
and uncertainty (standard deviation) of the individual and composite X2

v∗ assessment of each method. Considering
that the Method Reliability Rsm numbers were quite good, we would expect these X2

v∗ values to be lower than those
shown in Fig. 5. We believe that our intentional choice of grid studies with oscillations in both exponent p and output
quantity Fi might explain why we have good Rsm but X2

v∗ � 1 in general, and why there is no apparent correlation
between Rsm and X2

v∗ .
We observed overall that while most of the Methods #1 to #10 gave high Method Reliability Rsm, Method #1–#5

give unpredictable results for any given individual series, as reflected in their higher X2
v∗ numbers in Fig. 5. Hence we
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Table 4 Summary of features of solution verification method #1 to method #10.

Statistical
confidence Prediction

Uses and interval
Basic factor of Key prediction extrapolation

Method Symbol reference Basis safety Fs? equations intervals? to ho = 0?

Method #1 GCI,2σ Roache8 GCI YES 1–9 – –
Method #2 GCI,1σ Roache8 GCI YES 1–9 – –
Method #3 Fit, Fs = 3 Richardson9 REE YES 1–9 – –
Method #4 δRE , MAX Richardson9 REE – 1–8 – –
Method #5 δRE , AVG Richardson9 REE – 1–8 – –
Method #6 EH04u Eça and Hoekstra10 RSM YES 1–10 YES –
Method #7 NL04u Nitta and Logan11 RSM – 1–11 YES –
Method #8 NL04eu Nitta and Logan11 RSM – 1–11 YES –
Method #9 LN05u (This work) RSM – 1–12 YES YES
Method #10 LN05eu (This work) RSM – 1–12 YES YES

highly recommend the use of one or more of Method #6–#10 to obtain the most reliable and robust estimates of Usver .
We stress that the for the most part, use of Method #1–#10 for a solution verification uncertainty at confidence estimate
(i.e., Eqn. [5a]) show high method reliability Rsm, and therefore we urge the use of at least a few of these methods as
opposed to no estimate at all. We intend to add more data sets to our study and compare smooth convergence studies
with oscillatory ones.

A brief summary of solution verification Method #1–#10 is given in Table 4. The simplicity of the table may not
capture all of the subtleties of the different methods, but should give a quick overall view of each.

V. Linking Solution Verification to Model Validation
We used Method #1–#10 on the grid convergence study data of Nitta and Logan,11 and on a few of the examples

from Eça and Hoekstra.10 These grid convergence studies gave either non-smooth or even non-monotonic results,
making them ideal for testing the different solution verification methods. In general, these tests confirm that it is
best to use several of the Methods during a grid convergence study, and in particular we recommend running several
variants of Method #1–#10. We observed several cases where the inclusion of the prediction extrapolation parabola
(Method #9 and #10, LN05u and LN05eu) provided added stability by avoiding a spurious fit. We also observed
instances where minimizing (E + Us) as in Method #8 and #10 (NL04eu and LN05eu), avoided optimizing to a
spurious solution11 with apparent super-convergence. That is, we have seen instances where Method #7–#9 (NL04u
or LN05u) would indicate a spurious best-fit p = 3, whereas Method #8 or Method #10 (NL04eu or LN05eu)
would show a best-fit with p � 2. However, all of Methods #1–#10 are partly empirical in nature, and none has
proven totally robust, so far. Hence, we recommend several different combinations. Eça and Hoekstra10 offered one
additional simple, and perhaps close to bounding, estimate of Usver for extremely difficult non-monotonic grid sets,
and we provide an illustrative example. Consider the grid convergence results shown in Fig. 6. These are contrived
numbers, but very close to situations we have seen in nonlinear large deformation mechanics problems. Note that
only Ng = 3 grids are available. However, in this case, we make the reluctant assumption that for similar codes,
physics, algorithms, and problem application, the same convergence rate “p∗” applies to all four grid series. We now
have only Kg = 2 free parameters (F ∗

o and α∗), so we need a minimum of Ng = 3 grids. Method #10 (LN05eu), was
able to generate solution verification uncertainty at confidence estimates that are both stable and compare well with
those of “Emergency Method #E” as proposed by Eça and Hoekstra,10 as shown in the comparison in Fig. 7.

For what we call Method #E, Eça and Hoekstra propose to take the largest magnitude of observed difference in
two adjacent grids, and triple that value to obtain an estimate of the Usver uncertainty. The choice of tripling the
largest observed difference is at least as arbitrary as the choice of Fs = 3.00 in the GCI or other empirical methods,
and is simply a suggestion10 for use where grid convergence information already borders on being inadequate. For
the examples considered, we find that Method #10 (LN05eu) bounds their number with 1.00 sigma and 1.65 sigma
analyses. All methods tell us one very clear thing about this analysis: Three grids Ng = 3 are rarely enough for a
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Fig. 6 Special case example for Ng = 3; assume same p for all four grid series leaving Kg = 2. Convergence for the
sparse Ng = 3 ranges from oscillatory to ambiguous.

credible assessment of Usver , even when assuming the same p-value to make the analysis possible. Furthermore,
with grid results shown here, the message is simply that more work is needed. If a number must be had with only
the model results shown in Figs. 6–7, the value of Usver shown in Fig. 7 should be sufficiently large to avoid any
misinterpretation. In this case, an assessment that the solution verification uncertainty is 50 to 100% of the quantity
of interest would convey the proper message; that this model would only give us a converged answer “within a factor
of two or so” as measured on the output quantity of interest. The inadequacy of such grid convergence behavior can
now be reflected quantitatively even if only the “Emergency Method” assessment of Usver is carried forward into a
risk analysis and systems engineering construct.

Having described 10 methods for quantification of a term Usver as U |C, an uncertainty at an assessed statistical
confidence level e.g. C = 95%, we now proceed to link this result into a quantitative validation statement that results
from step [C] of our V&V process.

First of all, we offer a suggestion on how to proceed for the case where more than one of Method #1–#10 is
used. If more than one of Method #1–#5 is used, and large differences between the Usver estimates are observed,

Fig. 7 Special case example for Ng = 3; assume same p for all four grid series leaving K = 2. Uncertainty estimates
at 1-sigma are 24% to 40% using Method #10 at 1-sigma. Eça and Hoekstra “3x max difference” gives uncertainties
of 60% to 130%, about equal to Method #10 at 1.65 sigma. Either way, the message has been sent; this situation
heeds help.
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we suggest using one or more of Method #6–#10, which should give very similar estimates of Usver . If they do not,
we suggest using the largest of the Usver from Method #6–#10, while investigating the causes for the observed large
discrepancies between the methods. If all else fails and time constraints intervene, use the “Emergency Method #E”
discussed and illustrated in Figs. 6–7.

We have now assessed an uncertainty at confidence (Usver |C) for the grid convergence portion of solution veri-
fication. We have previously provided examples of how this (Usver |C) term is used in proceeding from solution
verification to validation, reliability, risk, and finally the generation of Benefit/Cost Ratios (BCRs) for future actions.11

The essential steps linking these processes are:
• Plot the quantity of interest versus grid spacing
• Use a mixture of Method #1–#10, or Method #E as a temporary method if needed, to generate the solution

verification uncertainty at confidence, Usver |C. This is “Step B” of the “ABCD” V&V process outlined earlier
in the paper.

• If the analysis is assessed to be low risk, or if one is confident that the conditions for the use of the GCI
are valid for the analysis, then the GCI (Method #1) with Ng = 3 or even Ng = 2 offers a fast assessment
of Usver |C that may indicate whether more advanced methods (Method #6–#10) and more grids Ng ≥ 4 are
needed.

• In general however, and as illustrated in our last example, three grids Ng = 3 are rarely enough for a credible
assessment of Usver , even if we assume the same p-value to make the analysis even possible.

• Use this Usver |C value as a mean value (MV) contribution carried forward into the Model Validation Pro-
cess “step C and D” of V&V. (There are methods more elaborate than including Usver |C as a mean value
contribution, and if Usver |C is large enough to have an impact on the validation statement about the model,
the inclusion of Usver |C as a mean value term may not be adequate. Methods more advanced than MV are
sometimes considered as integral with the type of reliability analysis4,26 to follow).

• Combine the total and components of uncertainty at confidence from validation with system requirements,
to generate a reliability %R, (0% < %R < 100%) for the model of the system (at a given assessed percent
confidence level, 0% < %C < 100%).

• Combine these measures of model + system reliability at confidence with a consequence assessment of success
and failure of the system, leading to quantitative risk and potential for risk mitigation or reduction.

• Assess the Benefit/Cost Ratio BCR of the opportunities for risk mitigation or reduction.
The measures for risk mitigation or reduction might include taking more experimental data or improving model

physics,6 or perhaps buying more compute capability11 to allow the chance to lower solution verification uncertainty.

VI. Conclusions: Linking Solution Verification to Validation, Reliability,
Risk, and Benefit/Cost

Solution verification is a difficult and tedious, but essential part of the model V&V process. We must acknowledge
that solution verification (grid convergence studies in particular) can take a lot of time and computer resources, and
so we must provide ways to show the value of the process with quantitative measures.

We have taken our discussion from the first step in a grid convergence study (plotting the quantity of interest versus
grid spacing) to the point where an input term for validation is generated. This term is an uncertainty at confidence,
Usver |C. We described 5 relatively simple methods and 5 more complex methods to assess Usver , with 1 emergency
method as a backup. We recommend that more than one be used in an analysis. The choice, and subsequent action,
may depend on the discrepancy between the value of Usver obtained from each method, as well as the risk involved in
using the simulation being considered. Our (limited) experience indicates that the values of Usver range, at 1-sigma
confidence, anywhere from less than 5% of the output quantity to as much as 100% of the output quantity. It is
not unusual to see values of Usver at 1-sigma of 30% of the output quantity when grid convergence studies are
non-monotonic in the output quantity. We do not know of any method for assessing grid convergence uncertainty that
will circumvent the fact that non-smooth grid convergence results lead to large values for the solution verification
uncertainty term.

There appears to be no unique method to assess solution verification uncertainty, especially for non-smooth grid
convergence results. We have presented 10 methods, and recommend using the largest value of Usver so obtained
while further investigation is pursued if warranted. We have structured each method with the goal of a Usver term that
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links directly into a quantitative validation process, i.e. quantification of assessed risk and the potential for reduction
in assessed risk at the cost of more work in solution verification. This linkage is important, because if we can show
the value, in terms of risk and benefit/cost ratio (BCR), of solution verification, perhaps it will be easier to justify the
effort spent on the process. Since there is a balance between the amount of effort (cost) spent on V&V of a model,
and the amount of value (reduced assessed risk) that can be gained, we have presented a method to quantify the
contribution of solution verification to this balance.

Developing our computational models in a systems engineering context will enable us to balance these two aspects,
and defend our determination of this balance. However, as we show in the analysis, the balancing point depends on
the details and fidelity of the quality of the codes, solution verification issues, referent data and model validation
status, consequences leading to risk assessments, and the important role of the BCR in determining when “better has
become the enemy of good enough”. The procedures just outlined will enable us to (hopefully) show, given sufficient
computational resources, a reduced value of assessed solution verification uncertainty via Eqn. [5a]. This will enable
us to credibly assess increased product reliability26 and reduced risk, leading to a positive dollar benefit4 �$B. If
this benefit outweighs the cost �$C of the computational power needed for solution verification, then we will have a
favorable BCR and will have made the business case for solution verification and the computational power needed.

The dangers of making decisions based on computational models with inadequate grid refinement are present,
whether we quantify and acknowledge the situation or not. Since there is no completely universal or theoretical
way to quantify the uncertainty and risk associated with grid convergence issues, we present several methods, from
very simple to very complex. Our message is to try at least one quantitative solution verification method, and carry
its quantitative impact through as an input to a risk-informed decision process. When decision makers realize how
important solution verification can be in a risk analysis context, support for solution verification will increase.
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